[1]何联格,周蓝,苏建强,等.新的蠕变-疲劳耦合损伤下活塞热-机疲劳寿命预测方法[J].内燃机学报,2023,(06):554-560.
 He Liange,Zhou Lan,Su Jianqiang,et al.A New Method for Predicting the Thermo-Mechanical Fatigue Life of Pistons Under Creep-Fatigue Coupling Damage[J].,2023,(06):554-560.
点击复制

新的蠕变-疲劳耦合损伤下活塞热-机疲劳寿命预测方法
分享到:

《内燃机学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年06
页码:
554-560
栏目:
出版日期:
2023-11-25

文章信息/Info

Title:
A New Method for Predicting the Thermo-Mechanical Fatigue Life of Pistons Under Creep-Fatigue Coupling Damage
作者:
何联格周蓝苏建强张斌石文军
1. 重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054;2. 重庆理工大学 车辆工程学院,重庆 400054;3. 重庆青山工业有限责任公司,重庆 402761;4. 精进电动科技股份有限公司,北京 100016
Author(s):
He LiangeZhou LanSu JianqiangZhang BinShi Wenjun
1. Key Laboratory of Advanced Manufacturing Technology for Automobile Parts,Ministry of Education,Chongqing University of Technology,Chongqing 400054,China;2. School of Vehicle Engineering,Chongqing University of Technology,Chongqing 400054,China;3. Chongqing Tsingshan Industrial Company Limited,Chongqing 402761,China;4. Jing-Jin Electric Technologies Company Limited,Beijing 100016,China
关键词:
活塞铸铝合金蠕变-疲劳耦合损伤寿命预测
Keywords:
pistoncast aluminum alloycreep-fatiguecoupling damagelife prediction
分类号:
TK412.4
文献标志码:
A
摘要:
建立了一种新的蠕变-疲劳非线性耦合损伤下铸铝合金材料热-机疲劳寿命预测模型,开展了铸铝合金材料力学性能与蠕变-疲劳试验测试,对寿命预测模型进行了验证. 其次,对比活塞热-机耦合有限元计算结果与温度场测试结果,对有限元模型进行了验证. 最后,用新的热-机疲劳寿命预测模型对活塞的热-机疲劳寿命进行了预测. 结果表明:新的蠕变-疲劳寿命预测模型预测结果均位于2倍误差带内,该模型具备良好的寿命预测能力;活塞热-机蠕变-疲劳耦合损伤中蠕变损伤占比较大,约为53.9%;活塞热-机蠕变-疲劳耦合损伤关键区域位于活塞销座与加强肋连接处,活塞在热-机载荷耦合作用下的热-机疲劳循环寿命为4290,满足可靠性要求.
Abstract:
A new fatigue-creep nonlinear coupling damage prediction model for thermo-mechanical fatigue life of cast aluminum alloy materials was established. The mechanical properties and creep-fatigue tests of cast aluminum alloy materials were carried out,and the life prediction model was verified. Secondly,the finite element model was verified by comparing the calculation results of the piston thermo-mechanical load coupling with the temperature field test results. Finally,the new thermo-mechanical fatigue life prediction model was used to predict the thermo-mechanical fatigue life of the piston. The results show that the prediction results of the new creep-fatigue life prediction model are all within a scatter band of factor two. In the piston thermo-mechanical creep-fatigue coupling damage,the creep damage accounts for a relatively large amount,about 53.9%. The critical area of the thermo-mechanical creep-fatigue coupling damage of the piston is located at the joint between the piston pin boss and the reinforcing rib. The thermo-mechanical fatigue cycle life of the piston under the coupled thermal-mechanical load is 4290,which meets the reliability requirements.

相似文献/References:

[1]巴 林,刘月辉,李爱红.利用进气CFD 分析改善活塞顶温度计算精度[J].内燃机学报,2014,(06):548.
 BA Lin,LIU Yue-hui,LI Ai-hong.Improvement of Piston Top Temperature Analysis Using Intake Process CFD Simulation[J].,2014,(06):548.
[2]王 鹏,吕继组,白敏丽,等.金刚石纳米流体强化活塞冷却油腔传热的数值模拟[J].内燃机学报,2013,(04):360.
 WANG Peng,L? Ji-zu,BAI Min-li,et al.Numerical on Heat Transfer Enhancement of Nanofluids for Cooling Gallery of Piston[J].,2013,(06):360.
[3]吴志明,明平剑.活塞环形油腔振荡冷却周向换热特性研究[J].内燃机学报,2018,(04):360.
 Wu Zhiming,Ming Pingjian.Study on Circumferential Cooling Heat Transfer of Piston Ring Oil Cavity[J].,2018,(06):360.
[4]李林剑,王 一,巫立民,等.基于微动特性的组合活塞顶裙结合面优化设计[J].内燃机学报,2018,(04):369.
 Li Linjian,Wang Yi,Wu Limin,et al.Optimization Design of the Joint Surface of the Piston Top and Skirt Based on Fretting Characteristics[J].,2018,(06):369.
[5]黄润伍,黄荣华,代 辉,等.海拔高度对柴油机活塞温度及热负荷的影响[J].内燃机学报,2019,(03):280.
 Huang Runwu,Huang Ronghua,Dai Hui,et al.Influences of Altitude on Piston Temperature and Thermal Load of a Diesel Engine[J].,2019,(06):280.
[6]王兆文,周 冬,梁 刚,等.大型船用柴油机活塞多腔振荡冷却的强化机制[J].内燃机学报,2021,(04):367.
 Wang Zhaowen,Zhou Dong,Liang Gang,et al.Enhanced Cooling Mechanism of Piston Multi-Cavity Oscillation Cooling in a Large Marine Diesel Engine[J].,2021,(06):367.
[7]史成荫,胡磊,周振.热机耦合下低速柴油机活塞蠕变-疲劳寿命[J].内燃机学报,2022,(04):357.
 Shi Chengyin,Hu Lei,Zhou Zhen,et al.Creep-Fatigue Lifetime of a Low-Speed Diesel Engine Piston Based on Thermo-Mechanical Coupling[J].,2022,(06):357.
[8]何联格,周蓝,苏建强,等.活塞用铝合金材料蠕变本构模型对比[J].内燃机学报,2022,(04):364.
 He Liange,,et al.Comparative of Creep Constitutive Model of Aluminum Alloy Material for Piston[J].,2022,(06):364.

更新日期/Last Update: 2023-11-25