[1]秦文瑾,汪 涛,齐观超,等.稀疏化动态模态分解算法在发动机缸内流场研究中的应用[J].内燃机学报,2020,(05):426-432.[doi:10.16236/j.cnki.nrjxb.202005055]
 Qin Wenjin,Wang Tao,Qi Guanchao,et al.Application of Sparsity DMD Method in the In-Cylinder Flow Field Research[J].,2020,(05):426-432.[doi:10.16236/j.cnki.nrjxb.202005055]
点击复制

稀疏化动态模态分解算法在发动机缸内流场研究中的应用
分享到:

《内燃机学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05
页码:
426-432
栏目:
出版日期:
2020-09-25

文章信息/Info

Title:
Application of Sparsity DMD Method in the In-Cylinder Flow Field Research
作者:
秦文瑾1汪 涛1齐观超1刘大明2周 磊3
(1. 上海理工大学 机械工程学院,上海 200093;2. 天津职业技术师范大学 汽车与交通学院,天津 300222;3. 天津大学 内燃机燃烧学国家重点实验室,天津 300072)
Author(s):
Qin Wenjin1Wang Tao1Qi Guanchao1Liu Daming2Zhou Lei3
(1. School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;2. School of Automobile and Transportation,Tianjin University of Technology and Education,Tianjin 300222,China;3. State Key Laboratory of Engines,Tianjin University,Tianjin 300072,China)
关键词:
缸内流场大涡模拟涡团动态模态分解
Keywords:
in-cylinder flowlarge eddy simulationvortex structuredynamic mode decomposition
分类号:
TK402
DOI:
10.16236/j.cnki.nrjxb.202005055
文献标志码:
A
摘要:
采用大涡数值模拟方法模拟了发动机缸内冷态流场,连续计算100 个周期,获得了缸内多循环流场数据库,模拟结果通过粒子图像速度场测量技术(PIV)测量试验进行了验证.然后,采用动态模式分解(DMD)算法分析动态非线性系统流场数据库,以识别其流动特性.结果表明:DMD 算法能够有效识别缸内涡团脉动频率,提取对应的流场结构,有利于发现在发动机整个工作过程中具有大衰变率的不稳定流场结构.此外,改进的“稀疏化”DMD 算法可有效地对最重要的流场结构进行低维近似,这将有利于寻找影响和控制发动机缸内流场动态演化的方法.
Abstract:
In-cylinder flow of an internal combustion engine in motored condition was simulated by the large eddy simulation. Flow field from 100 consecutive cycles were calculated and the simulation results were validated by particle image velocimetry (PIV) measurements. Then,dynamic mode decomposition (DMD) algorithm was used to analyze the flow field database to identify the flow characteristics. The result shows that the DMD algorithm can identify the in-cylinder vortexes vibration frequency,extract the corresponding flow structures and find the most unstable flow structures. In addition,the modified sparsity DMD algorithm is effective to select low dimensional representation for capturing the most important flow dynamic structures,which is benefit to find a way for further influencing and controlling the in-cylinder flow dynamic evolution.

相似文献/References:

[1]王 方,王 志,帅石金,等.增压小排量汽油机燃烧过程的大涡模拟[J].内燃机学报,2013,(04):331.
 WANG Fang,WANG Zhi,SHUAI Shi-jin,et al.Large Eddy Simulation of Combustion Process in a Boosted and Downsized Gasoline Engine[J].,2013,(05):331.
[2]周 磊,解茂昭,罗开红,等.代数亚格子湍动能模型及非黏性亚格子应力模型在喷雾大涡模拟中的应用[J].内燃机学报,2013,(03):215.
 ZHOU Lei,XIE Mao-zhao,LUO Kai-hong,et al.Application of Algebraic Model for Subgrid Turbulent Kinetic Energy and Non-Viscosity Subgrid Model to Large Eddy Simulation of Fuel Spray[J].,2013,(05):215.
[3]秦文瑾,解茂昭,贾 明,等.4 气门DISI 汽油机缸内湍流场POD 分析[J].内燃机学报,2013,(01):45.
 QIN Wen-jin,XIE Mao-zhao,JIA Ming,et al.POD Analysis on In-Cylinder Turbulent Flows in a DISI Gasoline Engine[J].,2013,(05):45.
[4]秦文瑾,许 敏,孔令逊.直喷式汽油机缸内涡量场的本征正交分解[J].内燃机学报,2016,(03):246.
 Qin Wen-jin,Xu Min,Hung L.S. David.Study of In-cylinder Vorticity Field using Proper Orthogonal Decomposition[J].,2016,(05):246.
[5]何志霞,纪长浩,陈驭航,等.柴油喷孔内云空化的试验和大涡模拟[J].内燃机学报,2016,(06):513.
 HE zhi-xia,JI chang-hao,CHEN yu-hang,et al.Visualization and LES on Cloud Cavitation Shedding in a Diesel Nozzle Orifice[J].,2016,(05):513.
[6]韦 武,解茂昭,贾 明.环境压力对超临界流体喷雾特性影响的数值分析[J].内燃机学报,2018,(03):237.
 Wei Wu,Xie Maozhao,Jia Ming.Numerical Analysis on the Influence of Ambient Pressure on Supercritical Fluent Spray Characteristics[J].,2018,(05):237.
[7]章 严,于 洲,王 浒,等.基于ESF和FGM的湍流预混火焰大涡模拟[J].内燃机学报,2020,(06):514.
 Zhang Yan,Yu Zhou,Wang Hu,et al.Large Eddy Simulations of Turbulent Premixed Flame Using ESF Model Coupled with FGM Model[J].,2020,(05):514.
[8]潘业俊,刘灿旭,刘红,等.船用低速柴油机喷嘴内流及初次破碎机理研究[J].内燃机学报,2022,(05):412.
 Pan Yejun,Liu Canxu,Liu Hong,et al.Investigation on the in-Nozzle Flow and Primary Breakup of Marine Low-Speed Engines[J].,2022,(05):412.
[9]赵万辉,孙婷,卫海桥,等.正十二烷喷雾火焰大涡模拟研究[J].内燃机学报,2023,(03):193.
 Zhao Wanhui,Sun Ting,Wei Haiqiao,et al.Large Eddy Simulation of n-Dodecane Spray Flame[J].,2023,(05):193.

更新日期/Last Update: 2020-09-25