[1]刘道建,章 严,王 浒,等.基于熵产通量路径的复杂化学反应动力学分析方法[J].内燃机学报,2021,(06):498-505.
 Liu Daojian,Zhang Yan,Wang Hu,et al.An Entropy Generation-Based Flux Pathway Analysis Method to Understand Complex Chemical Kinetics[J].,2021,(06):498-505.
点击复制

基于熵产通量路径的复杂化学反应动力学分析方法
分享到:

《内燃机学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年06
页码:
498-505
栏目:
出版日期:
2021-11-25

文章信息/Info

Title:
An Entropy Generation-Based Flux Pathway Analysis Method to Understand Complex Chemical Kinetics
作者:
刘道建章 严王 浒尧命发
天津大学 内燃机燃烧学国家重点实验室,天津300072
Author(s):
Liu Daojian Zhang Yan Wang Hu Yao Mingfa
State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
关键词:
化学反应动力学熵产分析反应路径机理简化
Keywords:
chemical kinetics entropy generation analysisreaction pathways mechanism reduce
分类号:
TK402
文献标志码:
A
摘要:
基于详细化学动力学模型的数值模拟有助于揭示燃烧过程的物理化学机制,但庞大的机理规模会给模拟带来巨大挑战.为此,笔者提出了基于熵产通量的复杂化学反应动力学分析及简化方法.该方法通过计算反应路径对系统熵产的贡献,从而识别出不同燃烧模式和工况下燃烧过程中的全局反应路径.采用该方法对二甲醚(DME)自燃和预混火焰传播过程进行分析,发现反应体系在不同初始条件下具有相似的反应特性,但不同反应阶段,燃料通过不同反应路径转化为产物.通过对DME 详细机理进行简化,发现简化机理滞燃期最大相对误差随枢纽组分阈值α0。增大而增大,但随路径权重阈值δ0。和边线基元反应贡献阈值β0。分别增大和减小到一定值后保持不变.最后,将包含103种组分和312个反应的简化机理与详细机理进行滞燃期、层流火焰速度和预混火焰物种浓度的验证,结果吻合很好.
Abstract:
Abstract:The numerical simulation based on detailed chemical kinetic model can reveal the physical and chemical details of combustion process,but great challenges exist due to the great mechanism scale. An entropy generation-based flux pathway analysis method was proposed to analyze and reduce the complex chemical kinetics. This method can identify the global reaction pathways of different combustion regimes under different initial conditions by calculating the contributions of pathways to system entropy generation. By analyzing the auto-ignition and premixed flame propagation processes of dimethyl ether(DME),it was found that the system has similar reaction characteristics under different initial conditions,but has different conversion pathways of fuel into products during different reaction stages. Finally,the proposed method was used to reduce the detailed mechanism of DME. The results show that the maximum relative error of ignition delay time of the reduced mechanism increases with the increase of α0,but remains unchanged when increasing δ0 and decreasing β0 to a certain value,respectively. The obtained reduced mechanism contains 103 components and 312 reactions and was verified against detailed mechanism with ignition delay time,laminar flame velocity and premixed flame species concentration. The results agree well.

相似文献/References:

[1]王井山,王锡斌,樊祥山,等.利用激波管对2-甲基四氢呋喃自燃特性的研究[J].内燃机学报,2016,(01):1.
 WANG Jing-shan,FAN Xiang-shan,YANG Kang-kang,et al.Investigation on Auto-Ignition Characteristics of MTHF Using a Shock Tube[J].,2016,(06):1.
[2]胡二江,彭 成,李孝天,等.碳酸二甲酯着火化学反应动力学模型研究[J].内燃机学报,2015,(02):104.
 HU Er-jiang,PENG Cheng,LI Xiao-tian,et al.Modeling on Ignition Delay Time of Dimethyl Carbonate[J].,2015,(06):104.
[3]张 韦,吴 伟,陈贵升,等.EGR 中主要组分对正庚烷燃烧与排放影响的 化学动力学研究[J].内燃机学报,2015,(02):154.
 ZHANG Wei,WU Wei,CHEN Gui-sheng,et al.Chemical Kinetics on the Effects of the Main Components of EGR on n-Heptane Combustion and Emissions[J].,2015,(06):154.
[4]胡二江,黄佐华,姜 雪,等.二甲醚对正丁烷着火延迟期影响的机理研究[J].内燃机学报,2013,(06):489.
 HU Er-jiang,HUANG Zuo-hua,JIANG Xue,et al.Kinetic Study on the Effect of DME Addition on Ignition Delay Time of n-Butane[J].,2013,(06):489.
[5]王 方,王 志,帅石金,等.增压小排量汽油机燃烧过程的大涡模拟[J].内燃机学报,2013,(04):331.
 WANG Fang,WANG Zhi,SHUAI Shi-jin,et al.Large Eddy Simulation of Combustion Process in a Boosted and Downsized Gasoline Engine[J].,2013,(06):331.
[6]何邦全,吴永惠.正丁醇-汽油HCCI 发动机低温燃烧过程的模拟[J].内燃机学报,2013,(03):222.
 HE Bang-quan,WU Yong-hui.Simulation of Low-Temperature Combustion in a HCCI Engine Fuelled with n-Butanol-Gasoline Blends[J].,2013,(06):222.
[7]沈颖刚,朱文霞,陈贵升,等.进气组分耦合喷油定时对柴油机工作过程的影响机理[J].内燃机学报,2016,(03):201.
 SHEN Ying-gang,ZHU Wen-xia,CHEN Gui-sheng,et al.Influencing Mechanism of Injection Timing Coupling with Intake Components on Working Process of Diesel Engine[J].,2016,(06):201.
[8]马志豪,吕恩雨,董永超,等.碳氢燃料在激波管内的裂解试验与动力学研究[J].内燃机学报,2022,(05):420.
 Ma Zhihao,Lyu Enyu,Dong Yongchao,et al.Experiment and Kinetic Study of Hydrocarbon Fuel Pyrolysis in Shock Tube[J].,2022,(06):420.

更新日期/Last Update: 2021-11-25