[1]卢凯,臧志成,刘德文,等.非道路柴油机后处理系统SCR喷嘴座结构优化[J].内燃机学报,2022,(03):280-287.
 Lu Kai,Zang Zhicheng,Liu Dewen,et al.Structure Optimization of SCR Nozzle Holder for After-Treatment System of Off-Road Diesel Engine[J].,2022,(03):280-287.
点击复制

非道路柴油机后处理系统SCR喷嘴座结构优化
分享到:

《内燃机学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年03
页码:
280-287
栏目:
出版日期:
2022-05-25

文章信息/Info

Title:
Structure Optimization of SCR Nozzle Holder for After-Treatment System of Off-Road Diesel Engine
作者:
卢凯臧志成刘德文吴燕白书战李国祥
1. 山东大学 能源与动力工程学院,山东 济南 250061;2. 凯龙高科技股份有限公司,江苏 无锡 214177
Author(s):
Lu KaiZang ZhichengLiu DewenWu YanBai ShuzhanLi Guoxiang
1. School of Energy and Power Engineering,Shandong University,Jinan 250061,China; 2. Kailong High Technology Company Limited,Wuxi 214177,China
关键词:
非道路柴油机选择性催化还原结晶模拟计算喷嘴防护罩
Keywords:
off-road diesel engineselective catalytic reduction(SCR)crystallizationsimulation calculationnozzle protective cover
分类号:
TK421.5
文献标志码:
A
摘要:
采用模拟计算以及试验验证方法,对不同喷嘴座方案进行分析,确定了影响非道路柴油机选择性催化还原(SCR)后处理系统中喷嘴表面结晶的主要因素.结果表明:喷嘴表面温度和喷嘴表面附近涡流是影响喷嘴表面结晶严重程度的重要因素,喷嘴表面温度越低喷嘴表面的结晶量就越少,喷嘴表面附近应避免涡流出现.降低喷嘴座高度并在内部增加防护罩可避免喷嘴表面温度过高,同时有效减小了喷嘴表面附近的涡流,降低了喷嘴表面的结晶风险.通过在SCR测试台架上运行结晶循环工况30个循环后,降低喷嘴座高度并在内部增加防护罩的方案,解决了喷嘴表面结晶的问题,满足SCR设计要求.
Abstract:
The main factors affecting the crystallization of nozzle surface were identified on an off-road diesel engine with the after-treatment system of selective catalytic reduction(SCR)by analyzing different nozzle holder schemes with simulation calculation and experimental validation. The results show that the temperature on the nozzle surface and the vortex near the nozzle are two important factors that affect the severity of nozzle crystallization. The amount of nozzle crystallization becomes less when the nozzle temperature is lower and the vortex near the nozzle surface is removed. Reducing the height of the nozzle holder and adding a protective cover inside the holder can significantly reduce the crystallization risk on the nozzle surface due to avoiding too high nozzle temperature and effectively re-ducing the vortex near the nozzle surface. After running the crystallization cycle on a SCR test bench for 30 circula-tion conditions,is it found that the scheme of reducing the holder height and adding the protective cover solves the nozzle crystallization issue and meet the SCR design requirement.

相似文献/References:

[1]王静,王谦,徐航,等.车用柴油机SCR系统NO_x转化效率影响因素[J].内燃机学报,2015,(05):453.
[2]王天田,颜伏伍,胡 杰,等.利用NOx传感器的NH3交叉敏感实现SCR 系统闭环控制[J].内燃机学报,2015,(02):178.
 WANG Tian-tian,YAN Fu-wu,HU Jie,et al.Feedback Control of SCR System by Cross-Sensitivity of NOx Sensor to NH3[J].,2015,(03):178.
[3]王 谦,张 铎,王 静,等.车用柴油机Urea-SCR 系统数值分析与参数优化[J].内燃机学报,2013,(04):343.
 WANG Qian,ZHANG Duo,WANG Jing,et al.Numerical Analysis and Parametric Optimization on Urea-SCR System of Vehicle Diesel[J].,2013,(03):343.
[4]钱 枫,吕 林,杨 栋.柴油机SCR系统排气管壁沉积物影响因素仿真[J].内燃机学报,2018,(02):144.
 Qian Feng,Lü Lin,Yang Dong.Simulation Study of Deposit Formation Inside the Exhaust Pipe on a Diesel Engine with SCR[J].,2018,(03):144.
[5]魏 铼,姚栋伟,吴 锋,等.Cu-SSZ-13柴油机SCR催化剂水热老化试验[J].内燃机学报,2018,(06):531.
 Wei Lai,Yao Dongwei,Wu Feng,et al.Experiment on Hydrothermal Aging over Cu-SSZ-13 Diesel SCR[J].,2018,(03):531.
[6]朱明健,胡振奇,夏少华,等.SCR尿素结晶风险的评估与预测[J].内燃机学报,2020,(01):90.
 ZhuMingjian,HuZhenqi,XiaShaohua,et al.Evaluation and Prediction about the Risk of Urea Deposits in the SCR System[J].,2020,(03):90.
[7]苏庆运,等.柴油机Fe-Cu 分子筛SCR 催化剂的数值模拟[J].内燃机学报,2020,(02):161.
 Su Qingyun,,et al.Numerical Simulation of Diesel Combined Fe-Cu Zeolite SCR Catalyst[J].,2020,(03):161.
[8]余俊波,莫春兰,黄文君,等.柴油机SCR 系统尿素沉积物详细反应路径[J].内燃机学报,2020,(02):169.
 Yu Junbo,Mo Chunlan,Huang Wenjun,et al.Detailed Reaction Pathways of Urea Deposit in Diesel Engine with Selective Catalytic Reduction System[J].,2020,(03):169.
[9]于 飞,赖慧龙,郭 律,等.钒基催化剂NH3-SCR低温反应特性研究[J].内燃机学报,2021,(01):74.
 Yu Fei,Lai Huilong,et al.Performance of SCR Catalysts Based on V2O5-WO3/TiO2 at Low-Temperature[J].,2021,(03):74.
[10]王秀雷,王志坚,李 勤,等.柴油机SCR载体SOF覆盖试验研究[J].内燃机学报,2021,(04):326.
 Wang Xiulei,Wang Zhijian,Li Qin,et al.Experimental Study on the SOF Coverage of SCR Carrier of Diesel Engine[J].,2021,(03):326.

更新日期/Last Update: 2022-05-25